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1 Introduction

In many forecasting exercises, fitting some range of quantiles of the forecast distribution
may be prioritized in model design and calibration. In risk management applications,
which will motivate this study, accuracy near the median of the distribution or in
the “good tail” of high profits is generally much less important than accuracy in the
“bad tail” of large losses. Even within the region of primary interest, preferences may
be nonmonotonic in probabilities. For example, the modeller may care a great deal
about assessing the magnitude of once-in-a-decade market disruptions, but care much
less about quantiles in the extreme tail that are consequent to unsurvivable cataclysmic
events. In this paper, we study a class of backtests for forecast distributions in which the
test statistic weights exceedance events by a function of the modeled probability level.
The choice of the kernel function makes explicit the priorities for model performance.
The backtest statistic and its asymptotic distribution are analytically tractable for a
very large family of kernel functions.

Our approach unifies a wide variety of existing approaches to backtesting. In the
area of risk management, the time-honored test statistic (dating back to Kupiec, 1995)
is simply a count of “VaR exceedances,” i.e., indicator variables equal to one whenever
the realized trading loss is in excess of the day-ahead value-at-risk (VaR) forecast. In
our framework, this corresponds to a Dirac delta kernel function in which all weight is
concentrated at exactly the target VaR level (e.g., at α = 0.99). At the other extreme,
the tests applied in Diebold et al. (1998) represent a special case in which weights
are uniform across all probability levels. The likelihood-ratio test of Berkowitz (2001)
represents an intermediate case of a kernel truncated to tail probabilities. The class
of spectral backtests encompasses discrete kernels, which selectively weight forecasts at
a discrete set of probability levels, as well as continuous kernels, which apply positive
weight throughout an interval of levels. Perhaps of greater importance in practice, the
class allows for both tests of unconditional coverage and tests of conditional coverage.

The application of a weighting function is this paper bears some similarity to the
approach of Amisano and Giacomini (2007) and Gneiting and Ranjan (2011) in the lit-
erature on comparisons of density forecasts. In both of those papers, weights are applied
to a forecast scoring rule to obtain measures of forecast performance that accentuate
the tails (or other regions) of the distribution. However, the measure for any one fore-
casting method has no absolute meaning and is designed to facilitate comparison with
other methods using the general comparative testing approach proposed by Diebold and
Mariano (1995). In contrast, our tests are absolute tests of forecast quality in the spirit
of Diebold et al. (1998). While the comparative testing approach is clearly useful for
the internal refinement of the forecasting method by the forecaster, the absolute testing
approach in this paper facilitates the external evaluation of the forecaster’s results by
another agent, such as a regulator.
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Our investigation is motivated in part by a major expansion in the data available
to regulators for the backtesting exercise. Prior to 2013, banks in the US reported
to regulators VaR exceedances at the 99% level. The new Market Risk Rule mandates
that banks report for each trading day the probability associated with the realized P&L
in the prior day’s forecast distribution, which is equivalent to providing the regulator
with VaR exceedances at every level α ∈ [0, 1]. The expanded reporting regime allows
us to assess the tradeoff between power and specificity in backtesting. If a regulator is
concerned narrowly with the validation of reported VaR at level α, than a count of VaR
exceedances is a sufficient statistic for a test for unconditional coverage. However, if the
regulator is willing to assign positive weight to probability levels in a neighborhood of
α, we can construct more powerful backtests. Furthermore, our approach is consistent
with a broader view of the risk manager’s mandate to forecast probabilities over a
range of large losses. The formal guidance of US regulators to banks on internal model
validation explicitly requires “checking the distribution of losses against other estimated
percentiles” (Board of Governors of the Federal Reserve System, 2011, p. 15).

The reforms mandated by the Fundamental Review of the Trading Book (Basel
Committee on Bank Supervision, 2013) introduce a distinct set of challenges. Due to
begin parallel run in 2018, the FRTB replaces 99%-VaR with 97.5%-Expected Shortfall
(ES) as the determinant of capital requirements. While there has been a lot of debate
around the question of whether or not ES is amenable to direct backtesting (Gneiting,
2011; Acerbi and Szekely, 2014; Fissler and Ziegel, 2015; Fissler et al., 2016), our con-
tribution addresses a different issue. We devise tests of the forecast distribution from
which risk measures are estimated and not tests of the risk measure estimates. When
VaR if of primary interest it may be noted that some limiting special cases of our testing
methodology are equivalent to VaR exceedance tests. When ES is of primary interest it
may be argued that a satisfactory forecast of the tail of the loss distribution is of even
greater importance, since the risk measure depends on the whole tail.

Two other aspects of FRTB are relevant to our contribution. First, although esti-
mates of ES will be the cornerstone of the risk capital calculation, the model approval
process will continue to be based on VaR estimates and VaR exceedances. Second,
FRTB requires banks to go beyond the mandatory VaR backtesting regime to con-
sider multiple levels or other features of the tail. Without being prescriptive, the Basel
Committee explicitly mentions a number of possible directions for the extended model
validation requirements including the use of probability integral transform values (Basel
Committee on Bank Supervision, 2016, Appendix B), which also serve as the input in
our class of backtests. For convenience in exposition, we mostly assume henceforth that
the backtest is conducted by a regulator who is interested primarily in assessing the
bank’s 99%-VaR forecast, but our conclusions hinge little on the choice of risk measure,
and furthermore apply as much to internal assessments of forecasting performance as
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to external assessment by regulators.
In Section 2, we lay out the statistical setting for the risk manager’s forecasting

problem and the data to be collected for backtesting. The transformation that under-
pins the class of spectral backtests is introduced in Section 3. Spectral backtests of
unconditional coverage are described in Section 4. In Section 5, we develop tests of
conditional coverage based on the martingale difference property. As an application to
real data, in Section 6 we backtest ten bank models for overnight P&L distributions for
trading portfolios.

2 Theory and practice of risk measurement

We assume that a bank models profit and loss (P&L) on a filtered probability space
(Ω,F , (Ft)t∈N0 ,P) where Ft represents the information available to the risk manager
at time t, N0 = N ∪ {0} and N denotes the non-zero natural numbers. For any time
t ∈ N, Lt is an Ft-measurable random variable representing portfolio loss (i.e., negative
P&L) in currency units. We denote the conditional loss distribution given information
to time t− 1 by

Ft(x) = P (Lt 6 x | Ft−1) .

The loss distribution cannot be assumed to be time-invariant. The distribution of
returns on the underlying risk factors (e.g., equity prices, exchange rates) is time-
varying, most notably due to stochastic volatility. Furthermore, Ft depends on the
composition of the portfolio. Because the portfolio is rebalanced in each period, Ft can
evolve over time even when factor returns are iid.

For t ∈ N we can define the process (Ut) by Ut = Ft(Lt) using the probability
integral transform (PIT). Under the assumption that the conditional loss distributions
at each time point are continuous, the result of Rosenblatt (1952) implies that the
process (Ut)t∈N is a sequence of iid standard uniform variables. The risk manager
builds a model F̂t of Ft based on information up to time t−1. Reported PIT-values are
the corresponding rvs (Pt) obtained by setting Pt = F̂t(Lt) for t ∈ N. If the models F̂t

form a sequence of ideal probabilistic forecasts in the sense of Gneiting et al. (2007),
i.e. coinciding with the conditional laws Ft of Lt for every t, then we expect the reported
PIT-values to behave like an iid sample of standard uniform variates.1

Reported PIT-values contain information about VaR exceedances at any level α.
To see this note that

Pt > α ⇐⇒ Lt > V̂aRα,t (1)

where V̂aRα,t := F̂←t (α) is an estimate of the α-VaR constructed at time t− 1 by cal-
1In the statistical forecasting literature tests based on the uniformity and independence of PIT value

are also referred to as tests that a sequence of models is calibrated in probability (Gneiting et al., 2007;
Gneiting and Ranjan, 2011).
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culating the generalized inverse of F̂t at α. Relationship (1) always holds for any model
F̂t, whether continuous or discrete.2 Thus, we would expect well-designed tests that
use reported PIT-values to be more powerful than VaR exceedance tests in detecting
deficiencies in the models F̂t.

Our tests are agnostic with respect to the procedures and models used by the bank
in forecasting. In practice, there is considerable heterogeneity in methodology. For
nearly two decades, most large banks have relied primarily on some variant of historical
sampling (HS), which is a nonparametric method based on re-sampling of historical risk-
factor changes or returns. A sufficient condition for the “plain-vanilla” HS estimator
F̂HS
t to be a consistent estimator of Ft for all t is that the returns are iid; however

the approach does not account for serial dependence in returns such as time-varying
volatility. For this reason, some banks adopt filtered historical simulation (FHS) as
suggested by Hull and White (1998) and Barone-Adesi et al. (1998). In this approach,
the historical risk-factor returns are normalized by their estimated volatilities, which are
typically obtained by taking an exponentially-weighted moving-average of past returns.
Banks that do not use HS or FHS typically adopt a parametric model for the joint
distribution of risk-factor changes.3

In our empirical application, testing for delayed response to changes in volatility is
of special interest. Assuming a roughly symmetric loss distribution centered at zero,
the frequent switching between positive and negative values will tend to cause PIT
values to be serially uncorrelated, even when volatility is misspecified in the model.
However, extreme PIT-values (i.e., near 0 or 1) will tend to beget extreme PIT-values
in high volatility periods, and middling PIT-values (i.e., near 1⁄2) will tend to beget
middling PIT-values in low volatility periods. This pattern can be inferred by examining
autocorrelation in the transformed values |2Pt − 1|. We will exploit this transformation
in implementing tests of conditional coverage in Section 6.

There are relatively few empirical studies of bank VaR forecasting. Berkowitz and
O’Brien (2002) show that VaR estimates by US banks are conservative (i.e., there are
fewer exceedances than expected) and that the forecasts underperform simple time-
series models applied to daily P&L. In a sample of Canadian banks in 1999–2005,
Pérignon et al. (2008) record only two 99%-VaR exceedances in 7354 observations.
Pérignon and Smith (2010) report similar results for a larger international sample in
1996–2005. For the subsample of banks employing HS, they also show that reported
VaR has little predictive power for subsequent volatility in P&L. Berkowitz et al. (2011)
apply a suite of backtests to a proprietary sample of four business lines of a single bank in
2001–2004. While they find some evidence of excessive conservatism and/or clustering

2We can replace the weak inequalities with strict inequalities if the models F̂t are strictly increasing
and continuous. Since it is somewhat more common to consider the event {Lt > V̂aRα,t} to be a VaR
exceedance, we will define a VaR exceedance in terms of the reported PIT-value as the event {Pt > u}.

3The classic RiskMetrics approach can be considered a progenitor of this class of models.
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of VaR exceedances in three of the four business lines, the exercise also demonstrates
the limited power of backtests in sample sizes of two to three years. The importance
of sample size is evident in the contrasting results of O’Brien and Szerszen (2017). In
a sample of five large US banks from 2001–2014, tests of unconditional coverage reject
VaR forecasts as excessively conservative for all banks in the pre-crisis and post-crisis
periods, for which the samples spanned at least 1000 trading days per bank. In the crisis
period, tests of unconditional coverage reject VaR forecasts as insufficiently conservative
for all five banks, and independence is rejected for four of the banks. This pattern is
consistent with a failure to model stochastic volatility.

3 Spectral transformations of PIT exceedances

The tests in this paper are based on transformations of indicator variables for PIT
exceedances.4 The transformations take the form

Wt =

∫ 1

0
1{Pt>u}dν(u) (2)

where ν is a finite measure defined on [0, 1] which is designed to apply weight to different
levels in the interval (0, 1], typically in the region of the standard VaR level α = 0.99.
We refer to ν as the kernel measure for the transform. From (2), we can easily derive
the closed-form expression

Wt = ν([0, Pt)) (3)

which shows that Wt is increasing in Pt.

3.1 Weighting schemes

For the weighting scheme in (2) we consider three possibilities:

Discrete weighting in which the kernel measure takes the form ν =
∑m

i=1 γiδαi for
m > 1. This places positive mass γ1, . . . , γm at the ordered values α1 < · · · < αm

leading to

Wt =

m∑
i=1

γi1{Pt>αi}. (4)

Continuous weighting in which the measure has density dν(u) = g(u)du on the
interval [α1, α2] ⊂ [0, 1], where the function g satisfies

Assumption 1. (i) g(u) = 0, u /∈ [α1, α2], (ii) g is continuous and (iii) g(u) >

0, u ∈ (α1, α2).
4We draw on the integral transform literature in describing our backtest as “spectral.” Our approach

is unconnected to the spectral density test of Durlauf (1991). The latter is a test of the martingale
property that examines whether the spectrum (in the sense of the transformed autocovariance sequence)
is flat.
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In this case we have
Wt =

∫ α2

α1

g(u)1{Pt>u}du. (5)

We refer to g as the kernel density. It plays the same role as the “kernel function”
in the nonparametric statistics literature, but we use the term in the more general
sense of the integral transform literature. When g satisfies the additional require-
ment that

∫ α2

α1
g(u)du = 1, it is a normalized kernel density. In nonparametric

statistics, the kernel is often defined to be normalized and symmetric, but we do
not impose either requirement here.

As in the nonparametric statistics literature, the interval [α1, α2] is referred to as
the kernel window. Note that g is strictly positive inside the kernel window, but
may equal zero at the boundary points. This allows us to accommodate functions
such as the Epanechnikov kernel that vanish at the boundaries. Writing G for the
integral of g, (3) can be expressed as

Wt = G(α1 ∨ (Pt ∧ α2)) (6)

Since G is strictly increasing inside the kernel window, (6) implies that Wt is a
strictly increasing function of the truncated PIT-value P ∗t = α1 ∨ (Pt ∧ α2).

Continuous weighting can be viewed as a way of building tests that incorporate
information from reported PIT-values in a neighborhood of a particular VaR level
α. Let g∗ be a normalized kernel density on [0, 1], and define a family of normalized
kernel densities gα,ϵ on the intervals [α− ϵ/2, α+ ϵ/2] by

gα,ϵ(u) =
1

ϵ
g∗
(
u− α+ ϵ/2

ϵ

)
. (7)

Then we have that the measures να,ϵ defined by gα,ϵ converge to Dirac measure
δα as ϵ → 0+, and limϵ→0Wt = 1{Pt>α} almost surely. Thus, classic tests based
on the exceedance indicator 1{Pt>α} can be seen as limiting cases of more general
continuous tests as the width ϵ of the kernel window vanishes to zero.

Combined discrete and continuous weighting. It is of course possible to consider
a measure that is given by the sum of a discrete weighting and a continuous
weighting scheme. We consider one test of this kind in Section 4.3. In this
general case, the notion of the kernel window generalizes as the support of the
kernel measure.

3.2 Univariate and multivariate transformations

We consider tests based on univariate and multivariate spectral transformations of the
data. A univariate transformation applies a single kernel measure ν and yields spectrally
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transformed PIT-values W1, . . . ,Wn according to (2). A multivariate transformation
corresponds to a set of distinct kernel measures ν1, . . . , νj . The transformed PIT values
are then vector-valued variables W1 . . . ,Wn where

Wt = (Wt,1, . . . ,Wt,j)
′, Wt,i =

∫ 1

0
1{Pt>u}dνi(u), j = 1, . . . , j. (8)

Spectrally transformed PIT values satisfy simple product rules that we will later
exploit in calculating variances of the (Wt) and covariance matrices of the (Wt). Con-
sider two discrete kernel measures ν1 and ν2 which share the same support. Then the
product Wt,1Wt,2 is a spectral transformation of Pt on the same support, and the kernel
weights are easily calculated as summarized in the following result.

Proposition 3.1. Fix a set of distinct levels 0 < α1 < · · · < αm < 1, and let
γi = (γi,1, . . . , γi,m)′ be a set of positive weights. The set of spectrally transformed
PIT values defined by Wt,i =

∑m
ℓ=1 γi,ℓ1{Pt>αℓ} is closed under multiplication and

Wt,1Wt,2 =
∑m

ℓ=1 γ
∗
ℓ1{Pt>αℓ} where γ∗ℓ are positive weights satisfying

γ∗ℓ = γ1,ℓ

ℓ∑
ℓ′=1

γ2,ℓ′ + γ2,ℓ

ℓ∑
ℓ′=1

γ1,ℓ′ − γ1,ℓγ2,ℓ.

If
∑m

ℓ=1 γ1,ℓ =
∑m

ℓ=1 γ2,ℓ = 1, then
∑m

ℓ=1 γ
∗
ℓ = 1.

An analogous product rule holds for the set of spectral transformations with con-
tinuous kernels on the same kernel window.

Proposition 3.2. Fix a kernel window [α1, α2] ⊂ [0, 1], and let gi be a kernel den-
sity on [α1, α2] satisfying Assumption 1. The set of spectrally transformed PIT values
defined by Wt,i =

∫ α2

α1
gi(u)1{Pt>u}du is closed under multiplication and Wt,1Wt,2 =∫ α2

α1
g∗(u)1{Pt>u}du where

g∗(u) = g1(u)G2(u) + g2(u)G1(u).

If g1 and g2 are normalized kernel densities on [α1, α2], then so is g∗.

Proofs for these proposition and other mathematical results are found in Appendix A.

3.3 Spectral backtests

We will refer to any backtest based on spectrally transformed PIT exceedances as a
spectral backtest. This encompasses a great variety of tests but two general testing
approaches will feature prominently in our presentation: Z-tests and likelihood ratio
tests (LRTs).
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To formulate these tests we state the null hypothesis in this paper to be

H0 : Wt ∼ F 0
W and Wt ⊥⊥ Ft−1, ∀t, (9)

where F 0
W denotes the distribution function of Wt in (8) when Pt is uniform; obviously

this subsumes the univariate case where we will simply write Wt for the spectrally-
transformed variables. The null hypothesis (9) implies that W1, . . . ,Wn are iid random
variables but also requires that Wt is independent of all information in the time t − 1

information set Ft−1, such as the values Pt−j for j > 0. Observe that our null hypothesis
is strictly weaker than a null hypothesis that the (Pt) are iid Uniform. This is by intent.
Since the regulator is free to choose ν in accordance with her priorities, she should not
object to departures from uniformity and serial independence that arise outside her
chosen kernel window.

Z-tests. In the univariate case these are based on the asymptotic normality of Wn =

n−1
∑n

t=1Wt under the null hypothesis (9). Using Propositions 3.1 and 3.2, we
calculate µW = E(Wt) and σ2

W = var(Wt) in the null model F 0
W . It then follows

trivially from the central limit theorem (CLT) that, under the null hypothesis (9),

Zn =

√
n(Wn − µW )

σW

d−−−→
n→∞

N(0, 1). (10)

In the multivariate case (dimWt = j) we have

√
n
(
W n − µW

) d−−−→
n→∞

Nj(0,ΣW )

where W n = n−1
∑n

t=1Wt and µW and ΣW are the mean vector and covariance
matrix of the null distribution F 0

W . Hence a test can be based on assuming for
large enough n that

Tn = n
(
W n − µW

)′
Σ−1W

(
W n − µW

)
∼ χ2

j , (11)

where we refer to Tn as a j-spectral Z-test statistic.

Likelihood ratio tests. These are based on parametric models FW (· | θ) that nest
the model in the null hypothesis (9). In other words F 0

W = FW (·, θ0) for some
value θ0. Writing LW (θ |W ) for the likelihood function, the test is based on the
asymptotic distribution of the statistic

LRW,n =
LW (θ0 |W )

LW (θ̂ |W )
(12)

where θ̂ denotes the maximum likelihood estimate.
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An important difference between the two classes of test is that the Z-tests are sen-
sitive to the choice of weighting scheme whereas the likelihood ratio tests are not.
Consider the univariate case for simplicity. The only aspect of the kernel measure ν

that determines the likelihood test statistic LRW,n is its support; the actual weighting
scheme applied on the support plays no role. For example, in the case of continuous
weighting, it is the kernel window [α1, α2] that determines the test statistic and not the
kernel density g. Apart from the choice of the support of the measure the only discretion
we have over the likelihood ratio test is the choice of nesting family FW (· | θ).

This is a consequence of the well-known invariance of the likelihood ratio test under
strictly increasing tranformations. To make this assertion clearer we will now give a
version of the invariance result in the case of univariate continuous weighting, which
will facilitate some of our later arguments.

Theorem 3.3. Let FP (p | θ) be a parametric model for the reported PIT values
P1 . . . , Pn that nests the uniform model as a special case corresponding to θ = θ0. Let
P ∗t = α1 ∨ (Pt ∧ α2) denote the corresponding truncated PIT values and Wt = T (P ∗t )

the values that are obtained under any transformation T which is strictly increasing and
continuous on [α1, α2] such as (6).

Let LP (θ | P ∗) denote the likelihood for the truncated PIT values under FP (p | θ)
and let LW (θ | W ) denote the likelihood for the (Wt) values under the distribution
FW (w | θ) implied by FP (p | θ). Then the maximizing values of LP (θ | P ∗) and
LW (θ |W ) are the same and the corresponding likelihood ratio test statistics of the null
hypothesis H0 : θ = θ0 against the alternative H0 : θ ̸= θ0 coincide regardless of the
choice of the transformation T .

4 Tests of unconditional coverage

It is common to divide backtesting methods into tests of unconditional calibration and
tests of conditional calibration. In the context of VaR backtesting, an unconditional
test is a test that exceedances are Bernoulli events with the correct probability of
occurrence while a conditional test is a test that exceedances have the correct conditional
probability of occurrence, which is equivalent to requiring that they are also independent
events. For spectrally transformed PIT-values, an unconditional test would test for the
distribution F 0

W implied by the uniformity of the PIT-values while a conditional test
would explicitly test for both the correct distribution and the independence of Wt and
Ft−1 for all t.

In this section we present a number of unconditional tests based on the Z-test and
LR-test ideas discussed in Section 3. It is important to note that the convergence
results on which these tests are based, although mostly stated under iid assumptions,
do hold in situations where the independence assumption is relaxed. Consider the Z-test
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convergence result in (10) and recall the martingale CLT of Billingsley (1961): if (Xt) is
a stationary and ergodic process adapted to a filtration (Ft) satisfying the martingale-
difference property E(Xt | Ft−1) = 0, then

√
nX

d−−−→
n→∞

N(0, σ2
X) where σ2

X denotes the
variance of Xt. Thus, the same convergence in (10) would be obtained if (Wt − µW ) is
a stationary and ergodic martingale difference sequence, which would entail that (Wt)

is an uncorrelated sequence. More generally, provided that limn→∞ var(
√
nWn) ≈ σ2

W

the test statistic Z in (10) will have no power to detect serial dependence. If, however,
there is persistent positive serial correlation in (Wt) leading to limn→∞ var(

√
nWn) >

σ2
W then the test statistic Z will have some power to detect dependencies; however,

more targeted tests of the independence property are available and are the subject of
Section 5.

An early paper on backtesting in a risk-management setting is Kupiec (1995), who
proposed a binomial likelihood ratio test for the number of VaR exceedances. Ziggel
et al. (2014) offer a refinement of this count-based test. Campbell (2006) recommended
testing exceedances at multiple levels, and introduced the Pearson chi-squared test in
this context. Pérignon and Smith (2008) proposed a multilevel likelihood ratio test gen-
eralizing the binomial test of Kupiec (1995). A multinomial LRT also underlies the work
of Colletaz et al. (2013) on the concept of a “risk map” to describe VaR exceedances at
two different levels. Kratz et al. (2016) provide a comparison of unconditional multi-
level tests (including Pearson and LRT) in a typical set-up for backtesting trading book
models and advocate the use of Nass’s variant on the Pearson test for control of size
and power.

Crnkovic and Drachman (1996) appear to have been first to advocate the use of
PIT-values for backtesting risk management models. They also allow for a weighting
function that plays the role of our kernel density, but the distribution for the resulting
test statistic must be simulated.5 The seminal paper of Diebold et al. (1998) described
a number of tests for the uniformity and independence of PIT values. Berkowitz (2001)
advocated a likelihood-ratio test based on fitting a truncated normal distribution to
probit-transformed PIT-values for regulatory application.

Most closely related to our work, Du and Escanciano (2017) and Costanzino and
Curran (2015) have proposed test statistics for spectral risk measures which can be
viewed as special cases of our univariate spectral Z-test approach. Both papers consider
a mathematical framework that permits a variety of kernels but focus on the case of
a uniform kernel and interpret the tests in terms of backtesting expected shortfall. In
contrast, we provide a general methodology that allows a bespoke choice of one or more
kernels according to testing priorities, show how this embeds many existing tests and
new tests and show how the framework may be easily generalized to the conditional

5The test of Crnkovic and Drachman (1996) is based on a weighted Kuiper distance between the
distribution of PIT values and the uniform. They refer to their weighting scheme as a “worry” function,
and propose that it should place higher weight on extreme PIT values.
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case.6 Other contributions using PIT-values include Kerkhof and Melenberg (2004),
who derive VaR and expected shortfall backtesting statistics by applying a functional
delta method to the empirical distribution function of PIT-values and Zumbach (2006),
who refers to PIT-values as probtiles.

In Section 4.1 we describe unconditional coverage tests based on discrete kernels.
Continuous kernels are considered in Section 4.2. Mixed kernels emerge in Section 4.3
through the study of tests based on a truncated probitnormal distribution.

4.1 Discrete weighting

Discrete tests are based on the univariate transformation Wt =
∑m

i=1 γi1{Pt>αi} as de-
fined in (4) and the multivariate transformation Wt = (1{Pt>α1}, . . . ,1{Pt>αm})

′ in (8)
for the same set of ordered levels α1 < · · · < αm. Obviously, when m = 1 (and γ1 = 1)
both transformations yield Wt = 1{Pt>α}, so that we obtain iid Bernoulli(1−α) variables
under the null hypothesis (9). This is the basis for standard VaR exceedance testing
based on the binomial distribution. The case m > 1 yields multinomial tests. We
consider first the binomial case followed by the multinomial case, in each case treating
the LRT followed by the Z-test.

A two-sided binomial LRT of the null p = 1 − α against the alternative p ̸= 1 − α

can be based on the asymptotic chi-squared distribution of the LR statistic under the
null in (12); this is the approach taken in Kupiec (1995) and Christoffersen (1998).
Note that the traffic-light system and model approval rules under Basel (see, e.g., Basel
Committee on Bank Supervision, 2016, Appendix B) are actually based on a one-sided
LRT of the null hypothesis against the simple alternative p = p1 for p1 > 1 − α; this
amounts to comparing the exception count

∑n
t=1Wt to a critical value defined by the

binomial distribution.
The Z-test statistic (10) for Wt = 1{Pt>α} coincides with the binomial score test

statistic

Zn =

√
n
(
Wn − (1− α)

)√
α(1− α)

. (13)

Kratz et al. (2016) give a comparison of different binomial tests and find that the
binomial score test perfoms best for the probability levels and sample sizes that are of
typical regulatory interest.

When m > 1 the variables Wt =
∑m

i=1 γi1{Pt>αi} take the ordered values Γ0 <

Γ1 < · · · < Γm where Γ0 = 0 and Γk =
∑k

i=1 γi for k = 1, . . . ,m. Under the null
6Du and Escanciano (2017) also show how the asymptotic distribution of the test can be adapted

to account for estimation error. We view this as less relevant in our setting since a regulator will tend
to take the strict line that backtests should penalize a failure to estimate models accurately even when
the models used are essentially correct in form.
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hypothesis (9) the distributions of Wt and Wt satisfy

P(Wt = Γi) = P(1′Wt = i) = αi+1 − αi, i ∈ {0, 1, . . . ,m}, (14)

where α0 = 0 and αm+1 = 1. In both cases this describes a multinomial distribution.
The multinomial generalization of the binomial LRT of Kupiec (1995) as proposed

by Pérignon and Smith (2008) is nested in our framework. The test depends on the
spectrally transformed PIT values through the observed cell counts Oi =

∑n
t=1 1{Wt=Γi}

(univariate transformation) or Oi =
∑n

t=1 1{1′Wt=i} (multivariate transformation).
Note in the former case that the cumulative weights Γi play no role in the resulting test
statistic, a consequence of the invariance property of the LRT noted in Section 3.3.

The univariate and multivariate tranformations do however result in different Z-
tests which can be considered as alternative generalizations of the binomial score test.
In the univariate case we can apply Proposition 3.1 to obtain

W 2
t =

m∑
i=1

γ∗i 1{Pt>αi} where γ∗i = 2γi

i∑
j=1

γj − γ2i = 2γiΓiγ
2
i ,

from which it is straightforward to calculate that the first two moments of Wt are given
by

µW =

m∑
i=1

γi(1− αi), σ2
W =

m∑
i=1

γ∗i (1− αi)− µ2
W .

Hence we can construct a Z-test based on the statistic Zn in (10) and vary the weights
γi to emphasise different levels αi.

In the multivariate case, if we construct an m-spectral Z-test as in (11), then we
obtain the classical Pearson chi-squared statistic as proposed by Campbell (2006).

Theorem 4.1.

n(W n − µW )′Σ−1W (W n − µW ) =
m∑
i=0

(Oi − nθi)
2

nθi

where Oi =
∑n

t=1 1{1′Wt=i} and θi = αi+1 − αi for i = 0, . . . ,m.

The Pearson test statistic Sm =
∑m

i=0(Oi − nθi)
2/(nθi) is usually compared with

a chi-squared distribution with m degrees of freedom; Theorem 4.1 in fact provides a
proof of the asymptotic law of the Pearson test by showing that it can be written as an
m-spectral Z-test.7

7Pearson’s test is known to perform poorly when cell counts are small, which is typically the case in
our tail-focussed applications. Nass’s variant on the test (Nass, 1959), which is based on an improved
approximation to the distribution of Sm gives improved results; see Cai and Krishnamoorthy (2006)
and Kratz et al. (2016) for more details of the approximation.
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4.2 Continuous weighting

In this section, Wt takes the form of (5) for a kernel density g satisfying Assumption
1; we also consider a bispectral test where Wt = (Wt,1,Wt,2)

′ is constructed from two
different kernel densities on the same kernel window.

In the univariate case, we apply the Z-test approach described in (10). It follows
from the application of Proposition 3.2 in the case where Wt,1 = Wt,2 = Wt that, under
the null hypothesis (9),

E(Wt) =

∫ α2

α1

g(u)(1− u)du and E(W 2
t ) =

∫ α2

α1

2g(u)G(u)(1− u)du.

These moments are straightforward to calculate analytically for a wide variety of kernel
densities, e.g., based on linear, quadratic, or exponential functions, or on beta-type
densities of the form (u−α1)

a−1(α2−u)b−1 for a, b > 0. Thus, our compact presentation
of the continuous spectral Z-test subsumes a very large family of possible tests.

The bispectral generalization is a new test that extends the idea of the continuous
spectral Z-test. For a bivariate spectral transformationWt = (Wt,1,Wt,2)

′ based on two
distinct kernel densities g1 and g2 with the same kernel window it is straightforward to
calculate µW = E(Wt) and ΣW = cov(Wt). The off-diagonal element of the matrix ΣW

requires the calculation of E(Wt,1Wt,2) which can be achieved using Proposition 3.2.
The test is based on assuming for large enough n the statistic Tn of (11) is distributed
χ2
2 under H0.

The intuition for the bispectral test is that by considering two different spectral
transformations we can test for two different features of the distribution of reported
PIT values in the tail. Obviously, we could consider higher dimensional generalizations
but the empirical results of Section 6 and the simulation results in our companion paper
show that the bivariate test works well.

4.3 Tests based on truncated probitnormal distribution

The tests in this section nest the null hypothesis (9) in a model where the underlying
reported PIT values P1, . . . , Pn have a probitnormal distribution satisfying Φ−1(Pt) ∼
N(µ, σ2). Writing θ = (µ, σ)′, the distribution function and density of Pt are respec-
tively

FP (p | θ) = Φ

(
Φ−1(p)− µ

σ

)
, fP (p | θ) =

φ
(
Φ−1(p)−µ

σ

)
φ(Φ−1(p))σ

, p ∈ [0, 1], (15)

which gives a flexible family containing the uniform distribution, which corresponds
to θ = θ0 = (0, 1)′. Other choices of nesting model are possible, for example a beta
distribution.
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The test statistics are based on the PIT values truncated to the interval [α1, α2],
that is, the values P ∗t = α1 ∨ (Pt ∧ α2). The likelihood contribution L(θ | P ∗t ) of an
observation P ∗t in the truncated model can be written as

L(θ | P ∗t ) =


FP (α1 | θ) P ∗t = α1,

fP (P
∗
t | θ) α1 < P ∗t < α2,

F̄P (α2 | θ) P ∗t = α2.

(16)

See (A.1) for the explicit likelihood of the sample P ∗1 , . . . , P
∗
n .

We first consider an LRT that θ = θ0 against the alternative that θ ̸= θ0. Recall
that (6) shows that spectrally transformed PIT values Wt are given by continuous,
strictly increasing transformations of the P ∗t . Theorem 3.3 implies that the LR test
of the null hypothesis that the truncated PIT values P ∗t have a truncated uniform
distribution, against the alternative that they do not, is equivalent to a whole family of
LR tests for the spectrally transformed PIT values under continuous weighting. In the
case where α2 = 1, this test is also equivalent to the test proposed by Berkowitz (2001);
in the case where α2 < 1 we obtain a generalization of the Berkowitz test–a Berkowitz
interval test.8

An alternative to the LRT is the classical score test, which has the advantage that
no maximization of the likelihood is required. It will turn out that this test is also a
bispectral Z-test. Denote the observed score vector for P ∗t by

St(θ) =

(
∂

∂µ
lnL(θ | P ∗t ),

∂

∂σ
lnL(θ | P ∗t )

)′
(17)

and let Sn(θ0) =
1
n

∑n
t=1 St(θ0) be the mean of the observed score vectors under the

null. The score test follows from the asymptotic distribution

√
nSn(θ0)

d−−−→
n→∞

N2

(
0, I(θ0)

)
,

where I(θ) denotes the expected Fisher information matrix. Consequently, for large n

we have approximately that

nSn(θ0)
′I(θ0)

−1Sn(θ0) ∼ χ2
2

An analytical expression for I(θ0) is provided in Appendix B.
The following result shows that this is a bispectral test with the structure (11) under

a generalization that allows some additional point mass at the endpoints of the interval
8Berkowitz (2001) models the data Φ−1(P ∗

t ) with a normal N(µ, σ2) distribution truncated to
[Φ−1(α1),∞). This coincides with our approach because Φ−1 is a continuous and strictly increasing
transformation and Theorem 3.3 again applies.
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[α1, α2].

Theorem 4.2. St(θ0) =Wt − µW , almost surely, where Wt,i can be expressed as

Wt,i = γi,11{Pt>α1} + γi,21{Pt>α2} +

∫ α2

α1

gi(u)1{Pt>u}du

for γi,1, γi,2 and gi(u) with analytical solution.

5 Tests of conditional coverage

Whereas unconditional tests are focused on testing for the hypothesized distribution
F 0
W of the spectrally transformed PIT-values, conditional backtests are joint tests of

the correct distribution and the independence of Wt and Ft−1 for all t, as asserted by
the null hypothesis (9). We have noted in Section 4 that the Z-tests presented there
may have some limited power to detect the presence of serial dependencies. The aim
in this section is to propose conditional extensions of our spectral tests that explicitly
address the independence of Wt and Ft−1. These tests should have more power to detect
departures from the null hypothesis resulting from a failure to use all the information
in Ft−1 when building the predictive model F̂t. In the context of risk management,
where models often fail to address time-varying volatility in adequate fashion, there is
a particular need for tests of this kind.

In his early paper on backtesting, Kupiec (1995) proposed a test for independence
of VaR exceedances based on the fact that the spacings between them should be geo-
metrically distributed. This latter property follows from the fact that a series of VaR
exceedances should behave like a Bernoulli trials process, that is iid Bernoulli events
with independent geometric waiting times.9

The tests that we develop below follow an alternative regression-based approach to
testing conditional coverage. Christoffersen (1998) proposed an early test in this vein in
which the iid Bernoulli hypothesis for VaR exceedances is tested against the alternative
hypothesis that VaR exceedances show first-order Markov dependence; this has been
generalized to a multilevel test by Leccadito et al. (2014). The Christofferson test can be
viewed as a likelihood-ratio test that the parameters in a simple linear regression model
are zero. An especially influential regression-based test is the dynamic quantile (DQ)
test of Engle and Manganelli (2004), in which exceedance indicators are regressed on
lagged exceedance indicators and lagged estimates of VaR to assess the null hypothesis
of independent exceedances occurring at the desired rate. Our martingale difference
framework generalizes the DQ test and includes a variant on the Christoffersen (1998)
test.

9Christoffersen and Pelletier (2004) further developed the idea of testing the spacings between VaR
exceedances using the fact that a discrete geometric distribution can be approximated by a continuous
exponential distribution. See McNeil et al. (2015) for more details of the theory.
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There are a number of other tests that are related to, but not directly subsumed by
the regression-based testing approach we develop below. Berkowitz et al. (2011) suggest
adapting the DQ test to use a standard link function for modelling binary response data
resulting in a generalized linear regression model. Dumitrescu et al. (2012) build on
this idea by considering the application to backtesting of the dynamic binary model
of Kauppi and Saikkonen (2008). Hurlin and Topkavi (2007) propose a multivariate
portmanteau test based on the autocorrelations of VaR exceedances at different lags
and different confidence levels. Leccadito et al. (2014) propose a generalization of the
Pearson multilevel test to test for independence of numbers of level exceedances across
time periods. Du and Escanciano (2017) develop a Box-Pierce-type test based on a
backtest statistic for expected shortfall that takes PIT values as input. Berkowitz et al.
(2011) provide a comprehensive overview of tests of conditional coverage and advocate
the DQ and geometric spacing tests in particular.

In the following subsections, we consider testing for the independence of transformed
reported PIT-values within a regression or conditional framework. We introduce the
notation (W̃t) for the sequence of transformed reported PIT-values W̃t = Wt − µW

centered at their theoretical mean µW under the null hypothesis (9). Recall from
Section 2 that the filtration (Ft) represents the information available to the risk manager
and that Pt is Ft-measurable. We test that (W̃t) has the martingale difference (MD)
property with respect to (Ft):

E(W̃t | Ft−1) = 0 (18)

which is necessary for (9) to hold.

5.1 Conditional spectral Z-test

When MD property (18) holds, we must have E(ht−1W̃t) = 0 for any Ft−1-measurable
random variable ht−1. We form the k + 1-dimensional lagged vector

ht−1 = (1, h(Pt−1), . . . , h(Pt−k))
′

for a function h, to which we refer as a conditioning variable transformation. To guar-
antee the existence of the second moment of ht−1, we assume that (Pt) is covariance-
stationary and that h is bounded.10 Particular examples that we will use in our empirical
analysis are h(p) = 1{p>α} for some α and h(p) = |2p− 1|c for c > 0.

We base our test on the vector-valued process Yt = ht−1W̃t for t = k + 1, . . . , n.
Under the null hypothesis (9), (Yt) is a MD sequence satisfying E(Yt | Ft−1) = 0. We
want to test that Yk+1, . . . ,Yn are close to the zero vector on average. The conditional

10The restriction on h can be relaxed considerably, but in practice we find that bounded functions
lead to more stable tests.
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predictive test of Giacomini and White (2006) which was developed for comparing
forecasting methods can be applied in this context. Let Y n,k = (n − k)−1

∑n
t=k+1 Yt

and let Σ̂Y denote a consistent estimator of ΣY := cov(Yt). Giacomini and White show
that under very weak assumptions, for large enough n and fixed k,

(n− k) Y
′
n,k Σ̂−1Y Y n,k ∼ χ2

k+1. (19)

Giacomini and White (2006) use the estimator Σ̂GW
Y = (n − k)−1

∑n
t=k+1 YtY

′
t but we

can use the fact that E(W̃ 2
t | Ft−1) = σ2

W for all t under the null hypothesis (9) to form
an alternative estimator. We compute that

ΣY = E(cov(Yt | Ft−1)) = E
(
E
(
YtY

′
t | Ft−1

))
= E

(
ht−1h

′
t−1E

(
W̃ 2

t | Ft−1

))
= σ2

WH (20)

where H = E
(
ht−1h

′
t−1
)

which suggests the estimator Σ̂Y = σ2
W Ĥ where11

Ĥ = (n− k)−1
n∑

t=k+1

ht−1h
′
t−1. (21)

The decomposition in (20) has the advantage that it generalizes our unconditional
spectral Z-test, which may be thought of as the case k = 0. The case k = 1 may be
viewed as a Z-test version of the first-order Markov chain test of Christoffersen (1998).
Moreover, as we now show, our conditional test contains as a special case the dynamic
quantile (DQ) test statistic proposed by Engle and Manganelli (2004). Let X be the
(n − k) × (k + 1) matrix whose rows are given by ht−1 for t = k + 1, . . . , n. Let
W̃ = (W̃k+1, . . . , W̃n)

′. It follows that

Σ̂Y = σ2
W (n− k)−1

n∑
t=k+1

ht−1h
′
t−1 = σ2

W (n− k)−1X ′X

and Y n,k = (n− k)−1X ′W̃ so that (19) may be rewritten as

σ−2W W̃ ′X(X ′X)−1X ′W̃ ∼ χ2
k+1. (22)

The DQ test statistic of Engle and Manganelli (2004) corresponds to the binomial score
case, i.e., the case where Wt = 1{Pt>α} and the CVT is h(p) = 1{p>α}.12

11We have also experimented with the test obtained under the stronger hypothesis that the Pt are
uniform, which allows us to calculate H = diag(1,E(h(Pt)

2), . . . ,E(h(Pt)
2)) analytically. The resulting

test has poorer size and is somewhat in conflict with our general philosophy that we should focus tests
for uniformity in the region where we require the risk model to perform.

12Engle and Manganelli (2004) allow as well for lagged VaR values to be included as regressors, but
change in portfolio composition implies that lagged VaR values are less informative than lagged PIT
values.
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For an alternative interpretation of our test, consider the time series regression
model

W̃t = β0 +
k∑

i=1

βih(Pt−i) + ϵt, t = k + 1, . . . , n (23)

for which X is the design matrix. Under the standard assumptions for time series
regression and assuming homoscedastic errors with known variance σ2

W , the least squares
estimator of β = (β0, . . . , βk)

′ is (X ′X)−1X ′W̃ and this is asymptotically normal with
covariance matrix σ2

W (X ′X)−1. Thus expression (22) describes the natural chi-squared
test that β = 0.

5.2 Conditional bispectral Z-test

The conditional spectral Z-test generalizes to a conditional bispectral Z-test. We con-
struct two sets of transformed reported PIT-values (Wt,1,Wt,2) for t = 1, . . . , n, and
form the vector Yt of length k1 + k2 + 2 given by

Yt =
(
h′t−1,1W̃t,1,h

′
t−1,2W̃t,2

)′
, (24)

where W̃t,i = Wt,i − µW,i and ht−1,i = (1, hi(Pt−1), . . . , hi(Pt−ki))
′. Parallel to the

previous section, let Y n,k = (n− k)−1
∑n

t=k+1 Yt for k = k1 ∨ k2, and let Σ̂Y denote a
consistent estimator of ΣY := cov(Yt). By the theory of Giacomini and White (2006),
for n large and (k1, k2) fixed,

(n− k) Y
′
n,k Σ̂−1Y Y n,k ∼ χ2

k1+k2+2. (25)

Working under the null hypothesis, we can generalize (20) to ΣY = AW ◦H, where
◦ denotes element-by-element multiplication (Hadamard product). The matrices are

H =

(
E
(
ht−1,1h

′
t−1,1

)
E
(
ht−1,1h

′
t−1,2

)
E
(
ht−1,2h

′
t−1,1

)
E
(
ht−1,2h

′
t−1,2

))

and

AW =

(
σ2
W,1Jk1+1,k1+1 σW,12Jk1+1,k2+1

σW,12Jk2+1,k1+1 σ2
W,2Jk2+1,k2+1

)
(26)

where Jm,n denotes the m× n matrix of ones and σW,12 = E
(
W̃t,1W̃t,2

)
. Our tests use

the estimator Σ̂Y = AW ◦ Ĥ, where Ĥ generalizes (21) as

Ĥ = (n− (k1 ∨ k2))
−1

n∑
t=(k1∨k2)+1

(h′t−1,1,h
′
t−1,2)

′(h′t−1,1,h
′
t−1,2). (27)
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5.3 Conditional probitnormal score test

The theory of the conditional bispectral test carries over to the probitnormal case.
Letting θ = (µ, β1, . . . , βk, σ)

′, consider a regression extension of (15) in which

FPt|Pt−1,...,Pt−k
(p | θ, pt−1, . . . , pt−k) = Φ

(
Φ−1(p)− µ−

∑k
i=1 βkh(pt−i)

σ

)
(28)

and write fPt|Pt−1,...,Pt−k
for the corresponding conditional density. This gives a dynamic

model in which we can test for θ = θ0 = (0, . . . , 0, 1)′.
As in Section 4.3, we model truncated PIT values P ∗t = α1 ∨ (Pt ∧ α2), but here

we condition on information about past PIT values. The likelihood contribution of an
observation P ∗t in the truncated model can be written as

L(θ | P ∗t , Pt−1, . . . , Pt−k) =


FPt|Pt−1,...,Pt−k

(α1 | θ, Pt−1, . . . , Pt−k) P ∗t = α1,

fPt|Pt−1,...,Pt−k
(P ∗t | θ, Pt−1, . . . , Pt−k) α1 < P ∗t < α2,

F̄Pt|Pt−1,...,Pt−k
(α2 | θ, Pt−1, . . . , Pt−k) P ∗t = α2.

(29)
The following result shows that the score test of the null hypothesis (9) in the regression
model described by (29) takes precisely the form (24) for a conditional bispectral test.

Proposition 5.1. The score statistic S̃t(θ) for the model described by (29) satisfies

S̃t(θ0) =
(
h′t−1,1W̃t,1, W̃t,2

)′
where h′t−1,1 = (1, h(Pt−1), . . . , h(Pt−k))

′, W̃t,i = St,i(θ0)

and St,i(θ0) denotes a component of the score vector in (17).

6 Application to bank-reported PIT values

We apply our spectral backtests to a set of ten samples of PIT values reported by US
banks to the Federal Reserve Board. Due to the generality of our framework, design of
such an empirical exercise involves choices along several dimensions, most notably with
respect to test type (Z-test vs LRT), kernel function, and kernel window. To guide these
choices, we have conducted an extensive set of simulation analyses, which are available
from the authors in a companion paper. For the tests of unconditional coverage, we
summarize our key findings as follows.

First, power typically increases with the width of the kernel window, but counterex-
amples abound. Intuitively, a test is most powerful in rejecting a false model when the
kernel function weights heavily on probability levels for which the inverse cdf of the
risk manager’s model diverges from the true model inverse cdf. If widening the window
leads to increased weight in the neighborhood of a crossing between the two cdfs, power
may diminish. As historical simulation in particular tends to understate the tails of the
distribution, in practice we expect that the most powerful tests will weight heavily on
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extreme probability levels. However, this can come at the expense of the stability of
the test, in the sense that the outcome can be determined by the presence or absence of
one or two very large reported PIT-values. Furthermore, testing at extreme tail values
of α runs counter to the primary regulatory motivation for the backtest, which is to
verify the bank’s 99% VaR.

Second, multinomial and truncated probitnormal LR tests are outperformed by
the corresponding score tests. They are similar in power, but the LRT tends to be
oversized. Overall, the Pearson and truncated probitnormal score tests are among the
most powerful in our study, so in the exercises below we include these tests and exclude
the corresponding LR tests.

Third, for the discrete tests, we find that 3-level tests perform as well as 5-level
tests. Therefore, we focus on the 3-level case in the multinomial tests below.

Fourth, bispectral tests tend to be more powerful than (single-kernel) spectral tests.
However, when the two kernels are too similar in shape, the gain in information from
combining these kernels is insufficient to compensate for the increased degrees of freedom
in the χ2 test.

6.1 Data

Our data consist of ten confidential backtesting samples provided by US banks to the
Federal Reserve Board at the subportfolio level. Mandatory reporting to bank regulators
pursuant to the Market Risk Rule took effect on January 1, 2013. For each significant
subportfolio and each business day, the bank is required to report the overnight VaR
at the 99% level, the realized clean P&L, and the associated PIT-value (see Federal
Register, 2012, p. 53105). While the first two fields have been available to regulators
for a long time (at least at an aggregate trading book level), access to PIT values is
new.

Each of our ten samples represents returns on an equity or foreign exchange subport-
folio. We have data on both subportfolios for four banks, and for two banks we have data
on only one subportfolio each. Banks have some discretion in defining subportfolios,
but in general these are broader than what might be associated with a “trading desk.”
The equity subportfolio, for example, is likely to contain equity derivatives (vanilla and
exotic) as well as cash positions. All of the samples lie within the three-year period
from 2013–2015, inclusive.

Summary statistics for the unconditional distributions are found in Table 1. Six
series span the entire period, and the shortest sample is about one year in length.
As is often the case with new regulatory reporting requirements, data quality are not
uniform. Two of the samples (coded Pf 104 and Pf 110) have a significant number of
missing values (3.4% and 6.7%, respectively). Furthermore, close inspection reveals
that most of the samples contain a small number of observations that are clearly or
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very likely to be spurious, e.g., a PIT value of 1 matched to a realized loss that was
smaller than the forecast VaR. We developed a heuristic procedure to identify spurious
values based on the distance between the reported PIT-value and an imputed value.
The latter is constructed using a portfolio-specific model that fits PIT to the ratio of
realized loss to VaR; see Appendix C for details. In test results reported below, we
treat spurious values as missing to make the tests less sensitive to reporting error. Our
conclusions are qualitatively robust to taking all non-missing observations as valid.

Remaining columns of the table provide a histogram of PIT values. For some port-
folios, the histograms appear to be unconditionally close to uniform. For example, for
Pf 109, 87.9% of PIT values lie in [0.05, 0.95) and remaining mass appears to be sym-
metrically distributed. For some other portfolios, tail PIT values are underrepresented
(e.g., Pf 104, Pf 107) or overrepresented (e.g., Pf 110) in the sample.

6.2 A menagerie of tests and kernel functions

We consider kernels of discrete, continuous, and mixed form. All the backtests described
below fall within our spectral Z-test class. All reported p-values are based on two-sided
tests, though one-sided versions of some tests are of course available.

Parameters α1 and α2 control the kernel window. For the continuous tests, α1 and α2

are the infimum and supremum of the kernel support. For the discrete case, we consider
3-level kernels at the set of points (α1, α

∗, α2), where α∗ = 0.99 is the conventional VaR
level. We define a narrow window for which α1 = 0.985 and α2 = 0.995, and a wide
window for which α1 = 0.95 and α2 = 0.995. Observe that the narrow window is
symmetric around α∗, whereas the wide window is asymmetric.

For the continuous case, there are a wide variety of plausible candidates for the
kernel density. Table 2 lists the kernel density functions on [α1, α2] that we discuss
below. The uniform and hump-shaped Epanechnikov kernels are borrowed from the
nonparametric statistics literature. The exponential kernel allows for weights that are
either increasing (ζ > 0) or decreasing (ζ < 0) in u. All but the exponential kernel are
special cases of the beta kernel. In view of the flexibility of the beta kernel class, in
Appendix D we provide analytical solutions for the moments of the transformed PIT
values for the general beta(a, b) case.

We next list the backtests to be implemented. For use in tables later, we assign
each test a mnenomic.

Binomial score test: the two-sided binomial score test at level α∗ (BIN).

3-level multinomial tests: we apply the Pearson test (Pearson3) and the Z-test with
discrete uniform kernel (ZU3).

Continuous spectral tests: we apply tests based on the uniform kernel (ZU); the
arcsin kernel (ZA); Epanechnikov kernel (ZE); increasing (ZL+) and decreasing
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Kernel Mnemonic Density g(u) Beta representation

Uniform ZU 1 1,1
Arcsin ZA 1/

√
u∗(1− u∗) 1⁄2,1⁄2

Epanechnikov ZE 1− (2u∗ − 1)2 2,2
Linear increasing ZL+ u∗ 2,1
Linear decreasing ZL− 1− u∗ 1,2

Exponential ZXζ exp (ζu∗) for some ζ ∈ R –

Table 2: Kernel density functions on [α1, α2].
u∗ denotes the rescaled value u∗ = (u− α1)/(α2 − α1). Density functions are not scaled to integrate
to 1. The exponential kernel is outside the class of beta kernels, so has no beta representation.

(ZL−) linear kernels; and increasing and decreasing exponential kernels (ZXζ)
with parameter ζ of 2 and -2, respectively.

Continuous bispectral tests: we apply combinations of the increasing and decreas-
ing linear kernels (ZLL), of exponential kernels with ζ = ±2 (ZXX), and of the
arcsin and Epanechnikov kernels (ZAE); we also apply the truncated probitnormal
score test (PNS).

6.3 Tests of unconditional coverage

Table 3 presents p-values for the tests of unconditional coverage. When we adopt a nar-
row kernel window, we find that all of the tests reject at the 5% level the forecast model
for portfolio Pf 104 and at the 1% level for Pf 107 and Pf 110. In view of the histograms
observed in Table 1, this is unsurprising. When an empirical distribution function (edf)
lies above the uniform cdf within the kernel window (as observed for Pf 104 and Pf 107),
large PIT values are underepresented in the sample, which suggests that the forecast
model overstates the upper quantiles of the loss distribution. When an edf lies below
the uniform cdf (as observed for Pf 110), large PIT values are overrepresented in the
sample, which suggests that the forecast model understates the upper quantiles.

For four of the portfolios (Pf 101, Pf 102, Pf 103 and Pf 106), none of the tests
reject. For the remaining three portfolios (Pf 105, Pf 108, Pf 109), the test p-values vary
considerably across the kernel functions. This is to be expected and desirable, as the
kernel functions prioritize different quantiles of the unconditional distribution.

In the upper panel of Figure 1, we plot the edf for five of the portfolios (Pf 101,
Pf 103, Pf 104, Pf 108 and Pf 109) to illustrate the differences in test performance. We
see that the edf for Pf 101 is relatively close to the theoretical uniform cdf (dot-dash
line) throughout the kernel window. The edf for Pf 103 lies well above the theoretical
cdf, but still is much closer to uniform than the edf for Pf 104. This indicates that
departures from uniformity must be fairly large to generate a test rejection in backtest
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samples of 2–3 years.
With the exception of portfolio Pf 108, the continuous spectral and bispectral Z-tests

tend to deliver lower p-values than the binomial score test. As seen in Figure 1, the edf
for Pf 108 is nearly flat in the lower half of the narrow window, and then rises sharply
in the upper half. A step function at the center point α∗ = 0.99 is especially sensitive
to this particular form of departure from uniformity, but its performance would not be
robust to relatively small changes in a handful of observations.

In the case of Pf 109, the forecast model is rejected (at the 5% level) only by the
bispectral ZLL test. Figure 1 reveals a crossing within the narrow kernel window be-
tween the edf and the uniform cdf, which implies that the forecast model underestimates
quantiles at one boundary of the kernel window and overestimates quantiles at the other
boundary. We refer to this as a slope deviation from the uniform cdf. The overall prox-
imity of the edf to the uniform cdf presents a challenge for single-kernel spectral tests
in general. In a bispectral test, by contract, when the two kernels differ markedly in
how they weight the lower and upper ends of the kernel window, the test can effectively
identify slope deviations.

Backtests for portfolios Pf 103 and Pf 106 are most sensitive to the choice of kernel
window. The associated forecast models are never rejected under the narrow window,
but rejected by most of the tests for the wider window. (Of course, the binomial score
test is invariant to the choice of kernel window.) For Pf 105 and Pf 109, however, the
few rejections under the narrow window vanish under the wider window. For Pf 108, we
find that widening the window increases test sensitivity to the choice of kernel function.

EDFs for these portfolios are depicted in the lower panel of Figure 1. For portfolios
Pf 103 and Pf 106, the edf departs most markedly from uniformity on the expanded por-
tion [.95, .985] of the wide window, whereas the edfs for Pf 105 and Pf 109 are relatively
close to the uniform cdf within this region. Similar to what was observed for Pf 109
within the narrow window, the ZLL test for Pf 108 appears to be picking up the slope
deviation associated with the single crossing between the edf and uniform cdf within
the wide window.

For brevity, the tables omit results for the increasing and decreasing exponential ker-
nels (ZX+2 and ZX−2, respectively) and the bispectral test that combines them (ZXX).
These exponential kernel functions coincide closely with the linear kernel functions, so
we find for all portfolios that p-values are very similar when we substitute ZX+2 for
ZL+, ZE−2 for ZL−, and ZXX for ZLL.
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Figure 1: Empirical distribution functions for select portfolios.
EDFs for narrow window (upper panel) and wide window (lower panel). Note that the set of
illustrated portfolios differs between the two panels.
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6.4 Tests of conditional coverage

Tests of conditional coverage involve all the design choices of the unconditional tests, and
further require the choice of the number (k) of lagged PIT values and the conditioning
variable transformation h(P ). Define V (u) = |2u− 1|; this V-shaped transformation of
PIT values is well-suited to uncover dependence arising from stochastic volatility. We
consider four candidates for the conditioning variable transformation (CVT):

EM: h(P ) = 1{P>0.99}. This test regresses the spectrally transformed PIT-values on
indicator variables for previous exceedances of the 99% VaR as in Engle and
Manganelli (2004).

V.BIN: h(P ) = 1{V (P )>0.98}. This two-tailed version of EM flags PIT values near
zero or one. Note that this small change requires that the regulator observe PIT
values, and not only the traditional exceedance indicators.

V.4: h(P ) = V (P )4. Raising V (P ) to the fourth power places heavier weight on tail
PIT values in the recent past.

V.1⁄2: h(P ) =
√

V (P ). Relative to V.4, this transformation dampens sensitivity to tail
PIT values.

Drawing guidance from simulation analyses in our companion paper, we fix k = 4 lags in
the monospectral tests. In the context of daily backtesting, this corresponds to looking
at dependencies over a time horizon of one trading week. To facilitate comparison to
the monospectral tests, we fix (k1 = 4, k2 = 0) for the bispectral tests. For parsimony,
we consider only the narrow kernel window [0.985, 0.995), and a subset of the kernel
functions included in the previous section.

Missing or spurious values may be especially troublesome in a test of conditional
coverage because a PIT value missing at time t introduces missing regressors at t +

1, . . . , t + k. To avoid losing the subsequent k observations, we replace missing or
spurious Pt−ℓ with an inputed value when computing the lagged vector ht−1. (As in the
tests of unconditional coverage, we do not impute missing Pt to backfill the dependent
variables Wt, but simply drop these observations.) Details of our imputation algorithm
are provided in Appendix C.

Table 4 presents p-values for the tests of conditional coverage. For portfolios Pf 108
and Pf 110, forecast models are strongly rejected (0.01% level) regardless of the choice
of CVT or kernel function; for brevity we drop these portfolios from the table. For
only a single portfolio (Pf 109), the forecast model is never rejected. In the other seven
cases, the choice of CVT and kernel function matter. We find:

• For portfolios Pf 102, Pf 103 and Pf 105, the V.4 CVT generally leads to rejection
at the 5% level, but tests using the EM CVT never reject. The V.BIN and V.1⁄2
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ID CVT BIN ZU ZL+ ZL− ZLL PNS

101

EM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
V.BIN 0.1450 0.0158 0.0145 0.0209 0.0361 0.0601
V.4 0.0599 0.0183 0.0102 0.0305 0.0512 0.0529
V.1⁄2 0.4504 0.3084 0.3396 0.2721 0.3633 0.2928

102

EM 0.8987 0.9960 0.9926 0.9977 0.9838 0.9970
V.BIN 0.8785 0.9045 0.9726 0.7709 0.7721 0.8222
V.4 0.3313 0.0418 0.1087 0.0185 0.0261 0.0393
V.1⁄2 0.4683 0.1628 0.3167 0.0819 0.1042 0.1472

103

EM 0.7530 0.8042 0.8838 0.7445 0.7877 0.8754
V.BIN 0.0226 0.0124 0.0061 0.0275 0.0423 0.0149
V.4 0.0788 0.0256 0.0277 0.0305 0.0466 0.0157
V.1⁄2 0.3834 0.2512 0.3210 0.2233 0.2837 0.2326

104

EM NA NA NA NA NA NA
V.BIN NA NA NA NA NA NA
V.4 0.2889 0.1903 0.2935 0.1471 0.2005 0.1564
V.1⁄2 0.2889 0.1903 0.2935 0.1471 0.2005 0.1564

105

EM 0.6178 0.3689 0.4902 0.3095 0.4010 0.3265
V.BIN 0.4124 0.0637 0.2813 0.0079 0.0144 0.0133
V.4 0.2355 0.0078 0.0862 0.0006 0.0013 0.0002
V.1⁄2 0.3196 0.0214 0.0935 0.0049 0.0092 0.0009

106

EM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
V.BIN 0.0098 0.0001 0.0003 0.0000 0.0000 0.0000
V.4 0.0088 0.0019 0.0103 0.0005 0.0005 0.0002
V.1⁄2 0.0485 0.0418 0.1425 0.0155 0.0137 0.0073

107

EM NA NA NA NA NA NA
V.BIN NA NA NA NA NA NA
V.4 0.1850 0.1076 0.1889 0.0772 0.1090 0.0787
V.1⁄2 0.1851 0.1076 0.1889 0.0772 0.1090 0.0787

109

EM 0.8836 0.6208 0.9293 0.2894 0.1021 0.2545
V.BIN 0.4884 0.3959 0.6654 0.1910 0.0658 0.1797
V.4 0.8716 0.7150 0.9099 0.4371 0.1606 0.4444
V.1⁄2 0.3425 0.2560 0.3632 0.1638 0.0561 0.2181

Table 4: Tests of conditional coverage.
We report test p-values by portfolio, conditioning variable transformation, and kernel function. The
monospectral tests utilize k = 4 lags, and for the bispectral tests we set (k1 = 4, k2 = 0). We fix a
narrow kernel window of [.985, .995]. Forecast models for Pf 108 and Pf 110 (not tabulated) are
rejected at the 0.01% level for all choices of CVT and kernel.
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CVT are less robust in performance than V.4. This reflects the greater sensitivity
of the V.4 transformation to local spikes in market volatility.

• Only in the case of Pf 101 does the Engle-Manganelli CVT pick up serial depen-
dence more effectively than the CVT based on V (P ), though here too the V.BIN
and V.4 CVT lead to rejection at the 5% for uniform and linear kernel functions.

• In two cases (Pf 104, Pf 107), the test statistic is undefined for the EM CVT and
its two-tailed counterparty (V.BIN). As there were no observed violations in either
tail (Pt < .01 or Pt > .99), in both cases the matrix Ĥ of (21) is singular, so Σ̂Y

in the test statistic cannot be inverted. This demonstrates a practical limitation
of a binary CVT, as short samples may often contain no tail values.

• Despite the adoption of a narrow kernel window in these tests, the spectral back-
tests often give improvements in power over the traditional binomial score test.
In particular, for portfolios Pf 102, Pf 103 and Pf 105, p-values for tests using the
continuous kernel functions are often much lower than p-values for corresponding
test using the BIN kernel.

7 Conclusion

The class of spectral backtests embeds many of the most widely used tests of uncon-
ditional coverage and tests of conditional coverage, including the binomial likelihood
ratio test of Kupiec (1995), the interval likelihood ratio test of Berkowitz (2001), and the
dynamic quantile test of Engle and Manganelli (2004). As we demonstrate with many
examples, viewing these tests in terms of the associated kernel functions facilitates the
construction of new tests. From the perspective of the practice of risk management,
making explicit the choice of kernel function may help to discipline the backtesting
process because the kernel function directly expresses the user’s priorities for model
performance.

Our results illustrate the value to regulators of access to bank-reported PIT-values.
Until recently, regulators effectively observed only a sequence of VaR exceedance event
indicators at a single level α, and therefore backtests were designed to take such data as
input. In some jurisdictions, including the United States, PIT-values have been collected
for some time. Besides opening the possibility of forming spectral test statistics, we have
demonstrated that lagged PIT-values are especially effective as conditioning variables
in regression-based tests of conditional coverage.

There is a growing literature on multivariate or multi-desk backtesting includ-
ing Wied et al. (2016) and Berkowitz et al. (2011) (see §4.4 and the CavMult test in
Table 7, specifically). The new standard for capital requirements for market risk (Basel
Committee on Bank Supervision, 2016) calls for backtesting at individual desk level
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and typical investment banks may have in excess of 50 desks. The spectral and bispec-
tral tests that we propose in this paper admit multi-desk generalizations that allow the
simultaneous evaulation of backtest results across multiple desks. We leave this as a
topic for future work.

A Proofs

A.1 Proofs of Propositions 3.1 and 3.2

The logic of these two proofs is identical and we give the proof of Proposition 3.2 only.

Wt,1Wt,2 =

(∫ α2

α1

g1(u)1{Pt>u}du

)(∫ α2

α1

g2(v)1{Pt>v}dv

)
=

∫ α2

u=α1

∫ α2

v=α1

g1(u)g2(v)1{Pt>u}1{Pt>v}dvdu

=

∫ α2

u=α1

∫ α2

v=α1

g1(u)g2(v)1{Pt>max{u,v}}dvdu

=

∫ α2

u=α1

∫ u

v=α1

g1(u)g2(v)1{Pt>u}dvdu+

∫ α2

u=α1

∫ α2

v=u
g1(u)g2(v)1{Pt>v}dvdu

=

∫ α2

u=α1

g1(u)

(∫ u

v=α1

g2(v)dv

)
1{Pt>u}du+

∫ α2

v=α1

g2(v)

(∫ v

u=α1

g1(u)du

)
1{Pt>v}dv

=

∫ α2

u=α1

g1(u)G2(u)du+

∫ α2

v=α1

g2(v)G1(v)dv

Note that g∗(u) clearly satisfies Assumption 1. If g1 and g2 are normalized kernel
densities on [α1, α2] then it follows that∫ α2

α1

g∗(u)du =
[
G1(u)G2(u)

]α2

α1

= 1.

A.2 Proof of Theorem 3.3

The likelihood LP (θ | P ∗) takes the form

LP (θ | P ∗) =
∏

t :P ∗
t =α1

FP (α1 | θ)
∏

t :α1<P ∗
t <α2

fP (P
∗
t | θ)

∏
t :P ∗

t =α2

F̄P (α2 | θ) (A.1)

where F̄ (u) denotes the tail probability 1 − F (u). Since T is strictly increasing and
continuous on [α1, α2], the distribution FW (w | θ) implied by FP (p | θ) satisfies

P(W = T (α1) | θ) = FP (α1 | θ),

fW (w | θ) = fP (T
−1(w) | θ)

T ′(T−1(w))
, w ∈ (T (α1), T (α2)),

P(W = T (α2) | θ) = F̄P (α2 | θ).
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It follows that the likelihood LW (θ |W ) is given by

LW (θ |W ) =
∏

t :Wt=T (α1)

FP (α1 | θ)
∏

t :T (α1)<Wt<T (α2)

fP (T
−1(Wt) | θ)

T ′(T−1(Wt))

∏
t :Wt=T (α2)

F̄P (α2 | θ)

=
LP (θ | P ∗)∏

t :α1<P ∗
t <α2

T ′(P ∗t )
.

It is clear that the same value θ̂ must maximize both these likelihoods and that the
likelihood ratio statistics must satisfy

LRW,n =
LW (θ0 |W )

LW (θ̂ |W )
=

LP (θ0 | P ∗)
LP (θ̂ | P ∗)

= LRP,n.

A.3 Sketch of proof of Theorem 4.1

The Pearson test is one of the best known tests in statistics. The result can be proved by
adapting an approach that is used to derive the asymptotic distribution of the Pearson
test statistic.

Let Xt = (Xt,0, . . . , Xt,m)′ be the (m + 1)-dimensional random vector with Xt,i =

1{1′Wt=i} for i = 0, . . . ,m. Under (9) Xt has a multinomial distribution satisfying
E(Xt,i) = θi, var(Xt,i) = θi(1− θi) and cov(Xt,i, Xt,j) = −θiθj for i ̸= j.

Suppose we define Yt to be the m-dimensional random vector obtained from Xt by
omitting the first component. Then E(Yt) = θ = (θ1, . . . , θm)′ and ΣY is the m × m

submatrix of cov(Xt) resulting from deletion of the first row and column. A standard
approach to the asymptotics of the Pearson test is to show that

Sm =
m∑
i=0

(Oi − nθi)
2

nθi
=

m∑
i=0

(
∑n

t=1Xt,i − nθi)
2

nθi
= n(Y − θ)′Σ−1Y (Y − θ),

where Y = n−1
∑n

t=1 Yt. The central limit theorem is then applied to Y to argue that
Sm ∼ χ2

m in the limit.
Let A be the m×m matrix with rows given by (e1 − e2, e2 − e3, . . . , em) where ei

denotes the ith unit vector. The inverse of this matrix is the upper triangular matrix
of one’s. It may be verified that Yt = AWt, θ = AµW and ΣW = A−1ΣY (A

′)−1.
We note that µW = (1 − α1, . . . , 1 − αm)′ and that ΣW is a matrix with diagonal
entries var(Wt,i) = αi(1−αi) and off-diagonal entries cov(Wt,i,Wt,j) = min(αi, αj)(1−
max(αi, αj)) for i, j ∈ {1, . . . ,m}. It follows that

Sm = n(Y −θ)′Σ−1Y (Y −θ) = n(W−µW )′A′Σ−1Y A(W−µW ) = n(W−µW )′Σ−1W (W−µW ).
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A.4 Proof of Theorem 4.2

Computing the score statistic and evaluating it at θ0 = (0, 1)′ yields

St(θ0) =


ψ1(α1) P ∗t = α1,

ψ∗(P
∗
t ) α1 < P ∗t < α2,

ψ2(α2) P ∗t = α2.

(A.2)

where

ψ1(u) =

(
−φ(Φ−1(u))/u

−φ(Φ−1(u))Φ−1(u)/u

)

ψ∗(u) =

(
Φ−1(u)

Φ−1(u)2 − 1

)

ψ2(u) =

(
φ(Φ−1(u))/(1− u)

φ(Φ−1(u))Φ−1(u)/(1− u)

)

The jumps at α1 and α2 are given by

(γ1,1, γ2,1)
′ = ψ∗(α1)−ψ1(α1), (γ1,2, γ2,2)

′ = ψ2(α2)−ψ∗(α2)

The weighting functions can be obtained by differentiating ψ∗(u) with respect to u on
(α1, α2) and are thus

g1(u) =
1

φ(Φ−1(u))
, g2(u) =

2Φ−1(u)

φ(Φ−1(u))
.

Finally, since µW =Wt − St(θ0), we must have that µW = −ψ1(α1).

A.5 Sketch of proof of Proposition 5.1

It may be verified that the partial derivatives ∂
∂µ lnL(θ | P ∗t , Pt−1, . . . , Pt−k) and

∂
∂σ lnL(θ | P ∗t , Pt−1, . . . , Pt−k) take the same essential form as the partial derivatives
of (16), from which it follows that S̃t,1(θ0) and S̃t,2+k(θ0) coincide with St,1(θ0) and
St,2(θ0) respectively. Moreover,

∂

∂βi
lnL(θ | P ∗t , Pt−1, . . . , Pt−k) = h(Pt−i)

∂

∂µ
lnL(θ | P ∗t , Pt−1, . . . , Pt−k),

hence S̃t,1+i(θ0) = h(Pt−i)St,1(θ0) for i = 1, . . . , k.
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B Probitnormal score test

The following identities are useful for dealing with the probitnormal distribution:∫ α2

α1

Φ−1(u)du = φ(Φ−1(α1))− φ(Φ−1(α2)) (B.1)∫ α2

α1

(
Φ−1(u)2 − 1

)
du = Φ−1(α1)φ(Φ

−1(α1))− Φ−1(α2)φ(Φ
−1(α2)). (B.2)

Let ξ(p | θ) = (Φ−1(p)−µ)/σ. The first derivatives of the log-likelihood of the truncated
probitnormal distribution are

∂

∂µ
lnL(θ | P ∗t ) =



− φ
(
ξ(α1|θ)

)
σΦ
(
ξ(α1|θ)

) P ∗t = α1,

− ξ
(
P ∗
t |θ
)

σ α1 < P ∗t < α2,

φ
(
ξ(α2|θ)

)
σΦ
(
ξ(α2|θ)

) P ∗t = α2,

(B.3)

and

∂

∂σ
lnL(θ | P ∗t ) =



−φ
(
ξ(α1|θ)

)
ξ(α1|θ)

σΦ
(
ξ(α1|θ)

) P ∗t = α1,

− ξ
(
P ∗
t |θ
)2

+1

σ α1 < P ∗t < α2,

φ
(
ξ(α2|θ)

)
ξ(α2|θ)

σΦ
(
ξ(α2|θ)

) P ∗t = α2.

(B.4)

Recall that the expected Fisher information matrix is defined as

I(θ)ij = −E
(

∂2

∂θi∂θj
lnL(θ | P ∗t )

)
.

The conditional second derivatives of the log-likelihood are

− ∂2

∂µ2
lnL(θ | P ∗t ) =



φ(ξ(α1|θ))
(
φ(ξ(α1|θ))+ξ(α1|θ)Φ(ξ(α1|θ))

)
σ2Φ(ξ(α1|θ))2 P ∗t = α1,

1
σ2 α1 < P ∗t < α2,

φ(ξ(α2|θ))
(
φ(ξ(α2|θ))−ξ(α2|θ)Φ(ξ(α2|θ))

)
σ2Φ(ξ(α2|θ))2

P ∗t = α2,

(B.5)

− ∂2

∂σ2
lnL(θ | P ∗t ) =



φ(ξ(α1|θ))
(
ξ(α1|θ)2φ(ξ(α1|θ))+ξ(α1|θ)3Φ(ξ(α1|θ))−2ξ(α1|θ)Φ(ξ(α1|θ))

)
σ2Φ(ξ(α1|θ))2 P ∗t = α1,

3ξ(P ∗
t |θ)2−1
σ2 α1 < P ∗t < α2,

φ(ξ(α2|θ))
(
ξ(α2|θ)2φ(ξ(α2|θ))−ξ(α2|θ)3Φ(ξ(α2|θ))+2ξ(α2|θ)Φ(ξ(α2|θ))

)
σ2Φ(ξ(α2|θ))2

P ∗t = α2,

(B.6)
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− ∂2

∂µ∂σ
lnL(θ | P ∗t ) =



φ(ξ(α1|θ))
(
φ(ξ(α1|θ))ξ(α1|θ)−Φ(ξ(α1|θ))+ξ(α1|θ)2Φ(ξ(α1|θ))

)
σ2Φ(ξ(α1|θ))2 P ∗t = α1,

2ξ(P ∗
t |θ)

σ2 α1 < P ∗t < α2,

φ(ξ(α2|θ))
(
φ(ξ(α2|θ))ξ(α2|θ)+Φ(ξ(α2|θ))−ξ(α2|θ)2Φ(ξ(α2|θ))

)
σ2Φ(ξ(α2|θ))2

P ∗t = α2.

(B.7)
By taking expectations using (B.1) and (B.2) and evaluating at θ0 = (0, 1)′ we obtain
the elements of I(θ0):

I(θ0)1,1 = φ(Φ−1(α1))
2/α1 + φ(Φ−1(α2))

2/(1− α2)

+ φ(Φ−1(α1))Φ
−1(α1)− φ(Φ−1(α2))Φ

−1(α2) + (α2 − α1), (B.8)

I(θ0)2,2 = φ(Φ−1(α1))
2Φ−1(α1)

2/α1 + φ(Φ−1(α1))Φ
−1(α1)

3

+ φ(Φ−1(α1))Φ
−1(α1) + φ(Φ−1(α2))

2Φ−1(α2)
2/(1− α2)

− φ(Φ−1(α2))Φ
−1(α2)

3 − φ(Φ−1(α2))Φ
−1(α2) + 2(α2 − α1), (B.9)

I(θ0)1,2 = φ(Φ−1(α1))
2Φ−1(α1)/α1 + φ(Φ−1(α1))

(
1 + Φ−1(α1)

2
)

+ φ(Φ−1(α2))
2Φ−1(α2)/(1− α2)− φ(Φ−1(α2))

(
1 + Φ−1(α2)

2
)
. (B.10)

C Identification of spurious PIT values

Consider a stylized Gaussian model in which loss is given by

Lt = σt−1Zt (C.1)

where (Zt) is an iid sequence of standard normal random variables and volatility σt−1

is Ft−1-measurable. Time variation in σt may arise from stochastic volatility or from
changes over time in portfolio composition. Suppose that the risk-manager knows the
true underlying distribution and the volatility. The risk-manager’s ideal value-at-risk
forecast at α = 0.99 is then

V̂aRt = Φ−1(0.99)σt−1

where Φ is the standard normal cdf. We do not observe σt−1, but from observing Lt

and V̂aRt, we can back out the realized value of Zt as

Zt = Φ−1(0.99)× Lt/V̂aRt. (C.2)
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Furthermore, the PIT values can be expressed as

Pt = F̂t−1(Lt) = Φ(Lt/σt−1) = Φ(Zt). (C.3)

In general, we would not expect the Zt to be Gaussian, so (C.3) will not hold.
However, so long as (Zt) is iid, there will still be a monotonic relationship between Zt

(as defined by (C.2)) and Pt. We find that the predicted relationship holds qualitatively
for all bank-reported portfolios, but with more noise in some portfolios than in others.
This suggests that we can use violations of monotonicity to identify spurious PIT values,
but the threshold for identification must vary across portfolios.

Let H(z; θi) : R → [0, 1] be a family of fitting functions with parameter θi for
portfolio i, and replace (C.3) by

Pi,t = H(Zi,t; θi) + ϵi,t (C.4)

where the ϵi,t are white-noise residuals. Since the H function should be increasing,
it is convenient to take H to be a cdf, even though it does not have a statistical
interpretation in our context. For convenience, we take H to be the normal cdf with
unrestricted (µi, σi) as θi.

For each portfolio i, we proceed as follows:

1. Fit θi by nonlinear least squares, and construct residuals ϵit = Pit −H(Zit; θ̂i).

2. The (ϵit) are bounded in the open interval (−1, 1), because H(Zit) does not pro-
duce boundary values. We model ϵit as drawn from a rescaled beta distribution on
(−1, 1) with parameters (a = τi/2, b = τi/2). This distribution has mean zero and
variance 1/(τi + 1), so we simply fit τi to the variance of the regression residuals.

3. Let B(ϵ; τ̂i) be the fitted beta distribution. We flag an observation Pit as spurious
whenever B(ϵit; τ̂i) < q/2 or B(ϵit; τ̂i) > 1−q/2, where q is a tolerance parameter.

4. We reestimate τi as in step 3 on a sample that excludes the spurious observations.
Repeat step 4 with the updated τ̂i. An observation is flagged as spurious if it is
rejected in either round of estimation.

In our baseline procedure, we set the tolerance parameter to q = 10−5, which
is intended to flag only the most egregious inconsistencies between Pit and the pair
(Lit, V̂aRit). A typical case involves a PIT value very close to zero or one associated
with a modest P&L such that |Lit| < V̂aRit. Setting q = 0 is equivalent to shutting
down the identification of spurious values.

The procedure yields imputed PIT values as P̂it = H(Zit; θ̂i). As noted in Section
6.4, we use the imputed values to fill in for spurious values in forming regressors in the
tests of conditional coverage.
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D Moments for the beta kernel

We provide a general solution to the moments and cross-moments of the transformed
PIT values when the kernel densities take the form

g(u) =
(u− α1)

a−1(α2 − u)b−1

(α2 − α1)a+b−1B(a, b)

for parameters (a > 0, b > 0) and α1 6 u 6 α2. The normalization guarantees that
G(α2) = 1, and helps align the solution with standard beta distribution functions
provided by statistical packages. In R notation, the kernel function is simply

G(u) = pbeta

(
max{α1,min{u, α2}} − α1

α2 − α1
, a, b

)
.

Solving for moments and cross-moments of kernels (g1(P ), g2(P )) for uniform P

involves the following integral:

M(a1, b1, a2, b2) =

∫ α2

α1

(1− u)g1(u)G2(u)du

=
B(a1 + a2, 1 + b1)

a2B(a1, b1)B(a2, b2)
3F2(a2, a1 + a2, 1− b2; 1 + a2, 1 + a1 + a2 + b1; 1)

=
B(a1 + a2, 1 + b1 + b2)

a2B(a1, b1)B(a2, b2)
3F2(1, a1 + a2, a2 + b2; 1 + a2, 1 + a1 + a2 + b1 + b2; 1)

(D.1)

where 3F2(c1, c2, c3; d1, d2; 1) denotes a hypergeometric function of order (3, 2) and ar-
gument unity. The final line follows from the Thomae transformation T7 in Milgram
(2010, Appendix A). Due to the normalization of the kernels, M does not depend on
the choice of kernel window.

When its parameters are all positive, as in the final expression for M , computing

3F2(c1, c2, c3; d1, d2; 1) is straightforward via the standard hypergeometric series expan-
sion. In practice, we are most often interested in integer-valued cases for which M has
a simple closed-form solution.

For given kernel window and PIT value, let Wa,b be the transformed PIT value
under a beta kernel with parameters (a, b). A recurrence rule for the incomplete beta
function (Abramowitz and Stegun, 1965, eq. 6.6.7) leads to a linear relationship among
“neighboring” transformations:

(a+ b)Wa,b = aWa+1,b + bWa,b+1 (D.2)

An immediate implication is that the uniform, linear increasing and linear decreasing
transformations (parameter sets (1,1), (2,1) and (1,2), respectively) are linearly de-
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pendent. Any pair of these kernels would yield an equivalent bispectral test, and a
trispectral test using all three kernels would be undefined due to a singular covariance
matrix ΣW . By iterating the recurrence relationship, we can derive linear relationships
among sets of kernels with integer-valued parameter differences ai−aℓ and bi−bℓ, which
would lead to redundancies among the corresponding j-spectral tests.
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